
PAIRWISE PROBABILITIES IN PROBABILITY NONREPLACEMENT SAMPLING 

James R. Chromy, Research Triangle Institute 

1. INTRODUCTION where 

The problem of controlling the pairwise 
probabilities, P(ij), in probability non - 
replacement sampling has existed since the 
development of a general theory of probability 
nonreplacement sampling in conjunction with the 
use of the Horvitz -Thompson estimator (ref. 1). 

A number of researchers have treated the subject 
directly or indirectly including Raj (ref. 2), 

Hanurav (ref. 3), Brewer (ref. 4), Durbin 
(ref. 5), Sampford (ref. 6), Jessen (ref. 7), 

Rao and Bayless (ref. 8), and Dodds and Fryer 
(ref. 9). Some of these approached the problem 
through a superpopulation model and examined 
such criteria as the superpopulation expectation 
of the variance of the Horvitz -Thompson estima- 
tor or the stability of the variance estimator. 
Jessen posed an intuitive criterion which relates 
most closely to the approach followed in this 
research, but he did not solve for optimum 
designs directly. 

A general superpopulation model with size 
measures defined to potentially achieve the prin- 
cipal advantages of probability nonreplacement 
sampling is described. Under this model the 
superpopulation expectation of the variance is 
not a function of the pairwise probabilities, 
P(ij). The criterion employed in seeking optimum 
designs is the superpopulation variance of the 
finite population variance. A general solution 
for the P(ij) in terms of the variances of the 
error terms in the superpopulation model is 
developed. Although the solution can be general- 
ized to any sample size, n (within certain 
restrictions), the problem of choosing three -wise 
to n -wise probabilities may still be difficult. 
A method for obtaining three -wise probabilities, 
P(ijk), consistent with the pairwise probabili- 
ties, P(ij), has been developed. 

2. THE HORVITZ - THOMPSON ESTIMATOR 

A theory for PPS nonreplacement sampling 
for within stratum samples of two or more 
elements was presented by Horvitz and Thompson 
(ref. 1). The unbiased estimator within Horvitz 
and Thompson's class two of linear estimators 
for probability nonreplacement (pnr) designs has 
come to be known as the Horvitz- Thompson esti- 
mator and is of the form 

n 
t(slpnr) = S Y[s(u)]/P[s(u)] 

u=1 

where 

s = [s(1),s(2),...,s(n)], a sample of 
n distinct elements from a 
sampling frame of N elements, 

Y(i) = the variate of interest in the 
sampling investigation for the 
i -th element in the universe, and 

P(i) = probability that the i -th element 
is included in the sample. 

In practice, the P(i) are usually determined so 

that 

P(i) = 
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X(i) = a known positive - valued variate 
associated with the i -th element 
in the universe, and 

N 
X( +) = S X(i). 

1 =1 

Horvitz and Thompson presented a formula for the 

variance of t(slpnr) under PPS sampling without 

replacement given by 

N 

V[t(slpnr)] = S 11'0_111-P(01/PM 
=1 

N N 
+ S S Y(i)Y(j)[P(ij) - P(i)P(j)]/[P(i)P(j)], 

i#j 
where 

P(ij) = the probability that the i -th 
and j -th units are both included 
in the sample (or the pairwise 

probability for the i -th and 

j -th units). 

Yates and Grundy (ref. 10) presented an 
alternate expression for the variance of the 
Horvitz -Thompson estimator, namely 

N N 
V[t(slpnr)] S S W(ij)D2(ij) 

i <j 

where 
W(ij) = P(i)P(j)- P(ij), 

D(ij) = Y(i)/P(i)-Y(J)/P(i). 

They also presented an alternate variance esti- 

mator which may be expressed as 

and 

n n 
v[t(slpnr)] = S S w[s(u),s(v)]D2[s(u),s(v)] 

u <v 

where 

w(ii) = W(ij) /P(ij) 

3. THE BASIC SUPERPOPULATION MODEL 

The model considered most relevant for 
study of the Horvitz- Thompson estimator and 
probability nonreplacement sampling is 

Y(i) = BX(i) + e(i) 
where 

B = an unknown constant, and 
e(i) = the error term which measures 

the deviation from the model. 

As pointed out by Horvitz and Thompson 
(ref. 1), t(slpnr) will have zero variance if 
P(i) is exactly proportional to Y(i) for all i. 

The proposed model is designed to take advantage 
of this possibility. By making the P(i) propor- 
tional to X(i), a nonzero variance of t(slpnr) 
occurs only if some of the e(i) are nonzero. 

Suppose one believed that a linear model 
with a nonzero intercept was more realistic for 
the population to be sampled. Such a model may 

be written as 

Y(i) = A + BZ(i) + e(i) 



where A and B are both unknown but nonzero 
constants and Z(i) is a measure of size. Use 
of the Horvitz -Thompson estimator and probability 
nonreplacement sampling with P(i) proportional 
to Z(i) would not provide the opportunity for a 
zero variance of t(slpnr) even if the e(i) were 
all zero. A zero variance would occur with the 
e(i) equal to zero only if the P(i) were exactly 
proportional to [A /B + Z(i)]. Unless one wishes 
to rely upon an extremely fortuitous set of error 
terms, e(i), to rescue the design and estimation 
plans from producing a large variance of t(slpnr), 
it appears more appropriate to use the no- 
intercept model 

Y(i) = BX(i) + e(i) 
where 

X(i) = A/B + Z(i). 

To define X(i), it is not necessary to know A and 
B individually, but only their ratio. Even a 
poor guess should lead to a better design than 
one that sets the P(i) in such a way that the 
principal advantage of PPS sampling cannot be 
achieved. 

In summary, the premise put forth here is 
that if one uses the Horvitz - Thompson estimator 
in conjunction with probability nonreplacement 
sampling, the proper course to follow is to set 

P(i) exactly proportional to some known X(i) 
which is believed to be approximately propor- 
tional to Y(i). If the no- intercept model does 
not present a good approximation of the Y(i) to 

X(i) relationship, the proper course to follow 
does not involve a magical choice of P(ij) to 
compensate for this shortcoming. It does involve 

the selection of some other variate as a measure 
of size. It should be noted that X(i) could be 
defined as a function of several other known 

variables. 
Consideration of an intercept model can be 

defended in the instance of multi -purpose sample 
surveys for modeling the variance of estimates 
associated with some less major purposes of the 

survey. The choice of the P(i) and P(ij) should 
probably still be based on some known variate, 
X(i), which fits the no- intercept model for the 
particular Y(i) that is associated with the 
major purpose of the survey. 

Suppose that the sampling statistician 
assumes the no- intercept model and utilizes as 

much information as is available to him to con- 
struct X(i) approximately proportional to the 
unknown Y(i). The following assumptions about 
the error terms appear reasonable in the predata 
collection stage of the sample design process: 

(1) Ee(i) = 0 for i 

(2) E[e(i) /X(i)]2 
for i 

(3) the error terms 

= 1,2,...,N, 

= s2(i) (finite), 
= 1,2,...,N, and 
are independent. 

The assumption of independence is not unrea- 
sonable if the X(i) are properly chosen and if 
stratification is used to its fullest extent 
consistent with requirements for the estimability 
of the variance. For most applications where 
PPS sampling is applied, deep stratification is 
also utilized. 

If one first assumes that the value of B is 
fixed and that the error terms sum to zero over 
the N population elements, then the independence 
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assumption is errorneous. Prior to sampling, 
however, B is not known and cannot be estimated. 
In this a priori sense, independence of error 
terms may be assumed as an indication of complete 
lack of further knowledge about the Y(i) given 
the X(i). 

4. THE SUPERPOPULATION VARIANCE OF THE 
FINITE POPULATION VARIANCE 

A particular outcome of the superpopulation 
model may be represented by an N- dimensional 
vector of error terms and designated as e. The 
transpose of e may be written as 

[e(1),e(2),e(3),...,e(N)]. 

For brevity, the Horvitz - Thompson estimator will 
be denoted by t(s) and its variance for a parti- 
cular finite population (i.e., for a particular 
e) will be denoted by V[t(s)le)]. The e indi- 
cates a particular sample of N error terms 
selected from the hypothetical superpopulation. 
The s indicates a particular sample of n elements 
selected from the finite population of N elements. 

In the finite population sense, the variance 
is computed over all possible samples s. The 
finite population variance is still a function 
of the error vector e. It is reasonable under 
the model to consider taking the expectation of 
V[t(s)le] over all possible outcomes e. The 
finite population variance for the Horvitz - 
Thompson estimator may be expressed in terms of 
the superpopulation model by selectively substi- 
tuting nX(i) /X( +) for P(i) and BX(i) + e(i) 
for Y(i) in the expression given in section 1. 
After some simplification this yields 

N 
n2X 2( +)V[t(s)le] S [B+e(i) /X(i)]2P(i)[1 -P(i)] 

i =1 

+ N 
+ S S [B+e(i)/X(i)][B+e(j)/X(j)][P(ij)-P(i)P(j)].. 

i#j 

After collecting terms in B2 and B, this expres- 
sion becomes 

N N N 
B2{ S P(0[1-P(í)] + S S [P(íj)-P(i)P(j)]} 

i=1 

N 
+ B{2 [e(i)/X(í)]P(i)[1-P(i)] 

i=1 

N N 
+ S [e(i)/X(i)][P(ij)-P(i)P(j)] 

i#j 

N N 
+ S S [e(j)/X(j)][P(ij)-P(i)P(j)]} 

i#j 

N 
+ S [e(i)/X(i)]2P(i)[1-P(i)] 

i=1 

N N 
+ [e(i)/X(i)][e(j)/X(j)][P(ij)-P(i)P(j)]. 

i#j 

After noting that 
N 
S [P(íj)-P(i)P(3)] -P(i)[1-P(i)i, 

j#i 



the expression simplifies further to 

N 
n2X 2( +)V[t(s)Ie] S [e(i) /X(i)]2P(i)[1 -P(i)] 

i =1 

N N 
+ S S[ e( i)/ X( i)][e(j) /X(j)][P(ij)- P(i)P(j)]. 

i #j 

Given the assumptions about the error terms, e(i), 
as stated above, the superpopulation expectation 
of the variance is simply 

N 
EV[t(s)le] n 2X2( +) S P(i)[1- P(i)]s2(i). 

1 =1 

Under the assumed model, the expectation of the 
variance is not a function of the pairwise pro- 
babilities and does not, therefore, provide any 
basis for selection of the pairwise probabilities. 

Since the particular choice of pairwise pro- 
babilities cannot be used to reduce the expected 
variance, another criterion must be developed. 
Intuitively, the sampling statistician should 
want to protect against an extremely large vari- 
ance. To protect against a large variance occur- 
ring most of the time, the sample design should 
produce variances that have a tight superpopula- 
tion distribution about their expected value. 
This intuitive criterion suggests minimizing the 
superpopulation variance of the finite population 
variance; this variance may be written as 

V {V[t(s)Ie]} = E {V2[t(s)Ie] }- E2 {V[t(s)Ie] 

Using the results obtained above, the square of 

the variance, V2[t(s)Ie], may be represented as 

N 

n4X 4( +)V2[t(s)Ie] ={ S [e(i) /X(i)]2P(i)[1- P(i)] }2 

i =1 

N N 
+ {S [e(i)/X(i)][e(j)/X(j)][P(ij)-P(i)P(j)]}2 

i#j 

N 
+ 2{ S [e(i)/X(i)]2P(i)[1-P(i)]} x 

i=1 

N N 

{S S [e(i) /X(i)][e(j) /X(j)][P(ij)- P(i)P(j)] }. 
1.#j 

The third term, or the cross product term can be 
seen to have a zero expectation under the assumed 
superpopulation model. After expanding the first 
two terms and noting which terms in the products 
have nonzero expectation, the superpopulation 

expectation of the squared variance, EV2[t(s)Ie], 
may be represented as 

EV2[t(s)Ie] 

N 
ñ 4X4(+){ S E[e(i)/X(i)]4P2(i)[1-P(i)]2 

i=1 

N N 
+ S S s2(i)s2(j)P(i)P(j)[l-P(i)][1-P0)] 
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N N 
+ 2 S S s2(i)s2(j)[P(ij)-P(i)P(j)]2}. 

It must be further assumed that E[e(i) /X(i)]4 
exists and is finite. 

The square of the superpopulation expecta- 

tion of the variance, E2V[t(s)Ie], may be written 
as 

N 

= n 4X4( +){ S s4(i)P2(i)[1- P(i)]2 
i =1 

N N 
+ S S s2(i)s2(j)P(i)P(j)[1-P(i)][1-P(j)]}. 

Combining the above results for EV 
2 
[t(s)le] 

and E2V[t(s)Ie] to obtain the superpopulation 
variance of the finite population variance pro- 
duces 

n4X 4(+)VV[t(s)Ie] 

N 

S {E[ (i) /X(i)]4- s4(i) }P2(i)[l- P(i)]2 
i =1 

N N 
+ 2 S S s2(i)s2(j)[P(ij)- P(i)P(j)]2. 

#j 

To minimize this variance by choice of P(ij), it 
is only necessary to consider those terms in the 
expanded form that are a function of the P(ij). 
This approach reduces to minimizing 

N N 
S S[P(i)P(j) - P(ij)]2s2(i)s2(j), 

or, in more compact notation 

N N 
S S W2(ij)s2(i)s2(j). 
i #j 

If the s2(i) are constant over all elements, i, 
this criterion reduces to the one suggested by 
Jessen (ref. 7). 

5. THE ALGEBRAIC SOLUTION FOR 
OPTIMAL VALUES OF P(ij) 

The solution for the P(ij) must satisfy the 
set of constraints 

N 
S P(ij) (n- 1)P(i). 

In terms of the W(ij), these constraints are 
equivalent to requiring that 

N 
S W(ij) P(i)[1- P(i)]. 

j 

The method of Lagrange multipliers may be 
used to obtain the constrained solution for the 
W(ij) and subsequently for the P(ij). The 
function to be minimized may be written as 

N N 

F {W(ij),K(i):i #j} = S S W2(ij)s2(i)s2(j) 
i #j 

N N 
- 4 S K(í){ S W(ij)- P(i)[1- P(i)] 

1 =1 j #í 



In the above, the K(í) are the Lagrange multi- 
pliers. Taking derivatives with respect to the 
W(ij) and setting them equal to zero as a 
necessary condition for obtaining a minimum pro- 
duces N(N -1)/2 independent equations of the form 

W(ij) = s- 2(i)s- 2(j) {K(i) +K(j) }. 

Taking derivatives with respect to the K(i) and 
setting them equal to zero yields N additional 
equations of the form 

N 
S W(ij) = P(i)(1- P(i)]. 

j #i 

The entire process yields a set of N(N+1) /2 
simultaneous equations. The number of equations 
to be solved initially can be reduced by applying 
the second set of equations to the first set to 
obtain N equations in K(i) only: 

N N 
P(i)[1- P(i)]s2(i) = K(i) S s -2(j)+ S K(j)s -2(j) 

j #i #i 

= K(i)[ S s- 2(j)- 2s- 2(i)]+ S K(j)s 
-2(j). 

j =1 j =1 

This set of equations may be represented in 
matrix notation as 

c =Mk. 
The N x 1 vector, c, has elements c(i) defined as 

c(i) = P(i)[1- P(í)]s2(i). 

The N x 1 vector k is the vector of unknown 
Lagrange multipliers, K(i). The N x N matrix, M, 
may be represented as 

M = D + 1 b' 

where D is a diagonal matrix. The diagonal 
elements of the matrix D may be expressed as 

d(ii) S(1)- 28 -2(i). 

The term S(1) is defined as the following sum: 

N 
S(1) S s -2(k). 

k =1 

The vector 1 consists of N ones. The vector b 

has elements 

b(i) = s -2(i). 

If the two sums S(2) and S(3) are defined as 

N 
S(2) b(k)d 1(kk) and 

k=1 

N 
S(3) = b(k)c(k)d 1(kk), 

k=1 

and if S(2) # -1, then the simultaneous equations 
in k(i) have solutions given by 

k(i) = d- (1 +S(2))- 

Having obtained algebraic solutions for the 
K(i), the algebraic solutions for the W(ij) may 
be obtained by substituting the solved K(i) 
values in the first N(N -1)/2 equations, namely as 

272 

W(ij) = s-2(i)s-2(j)1K(i) + K(j) 

The P(ij) may be obtained as 

P(ij) = P(i)P(j)- W(ij). 

To be valid solutions in the sense of 
yielding a probability sampling design, all of 
the P(ij) must satisfy the conditions 

0 P(ij) minimum {P(i),P(j) }. 

These may be called the "weak constraints ". 
An even stronger set of constraints on the 

P(ij) may be considered, namely, 

CP(i)P(j) P(ij) P(i)P(j) 

for some small C > O. These may be called the 
"strong constraints ". 

6. ADJUSTMENT PROCEDURES 

Three alternative methods for adjusting the 
P(ij) when the algebraic solutions fall outside 
of prescribed boundary values may be applied: 

(1) constrained minimization, 
(2) compensating additive adjustments, and 
(3) sampling unit redefinition. 

All three adjustment methods may be handled as 
methods for adjusting the W(ij) rather than the 
P(ij). Only method 2, compensating additive 
adjustments, is discussed in this paper. 

Method 2 may be applied without accuracy 
limitations of computer matrix inversion proce- 
dures. The method treats one W(ij) at a time as 
follows. Suppose W(ij) exceeds the prescribed 

upper bound, 

W(ij) - U(ij) = a 

and a > O. Corrective adjustments may be made 
in the W(ij) without violating the N constraints 

N 
S W(ij) = P(i)[1- P(i)]. 

j #i 

The recommended procedure is: 

(1) adjust W(ij) by -a, 
(2) adjust W(ik) by +a /(N -2) for k or j, 
(3) adjust W(jk) by +a /(N -2) for k or j, 

and 
(4) adjust W(km) by -2a /[(N- 2)(N -3)] for 

k or j and m#i or j. 

If several W(ij) must be adjusted, they can 
be handled individually in an iterative fashion. 

Since the adjustments for different W(ij) may 
tend to work against each other in the iterative 
process, it is recommended that the iteration 
continue until sufficient numerical accuracy is 
obtained. 

7. SOME COMMENTS ON THE CHOICE OF CONSTRAINTS 

Requiring that 

P(ij) P(i)P(j) 

guarantees that all terms in-the Yates -Grundy 
form of the variance will be non - negative and 
the Yates- Grundy variance estimator also will be 
non -negative for all possible samples. 

The initial form of the strong constraints 
was discussed in section 5 and was stated as 

CP(i)P(j) P(ij) P(i)P(j) 



for all P(ij) and some small C > O. If one 
considers the left -hand part of the inequalities 

and sums both sides over j not equal i, the 
result is 

CP (i) [n -P (i) ] (n- 1)P(i) 

for all i, or after factoring out P(i) and 
dividing by [n- P(i)], 

C (n- 1) /[n -P(i)] 

for all i. If a single value of C is to be used, 
it must be less than the minimum value over all i 
of 

(n- 1) /[n- P(i)]. 

Setting C less than or equal to (n -1) /n satisfies 
this requirement for an upper bound of C. 

If the strong constraints are applied with C 
set at (n -1) /n, some immediate effects on the 
finite population variance and variance estimates 
may be noted. 

Stating the constraints in terms of the W(ij) 
gives 

C W(ij) P(i)P(j) /n 

The right hand term may also be expressed as 

nX(i)X(j) /X2( +). The variance of the Horvitz - 
Thompson estimator for designs employing this 
constraint will then be bounded above by 

2N N 2 
[n /X( +)] S S X(i)X(j)D (ij) 

i #j 

where 

D(ij) = Y(i) /P(i) - /P(j) 

or equivalently 

D(ij) [X( +) /n][Y(i) /X(i) - Y(j) /X(j)]. 

This upper bound is exactly equivalent to the 
variance of the total estimates for the standard 
Hansen- Hurwitz probability replacement design. 
This particular form of the variance for proba- 
bility replacement sampling is developed as an 
analogue to the nonreplacement form by Kendall 
and Stuart (ref. 11). 

The same constraint on the P(ij) may be 
expressed in terms of coefficients, w(ij), of the 
Yates- Grundy variance estimator by first noting 
that 

w(ij) = P(i)P(j)/P(ij)-l. 

Then the effects of the constraints on the w(ij) 
can be noted in the following steps: 

(n- 1)P(i)P(j) /n 5 P(ij) P(i)P(j), 

1 /[P(i)P(j)] 5 1 /P(ij) 5 n /[(n-1)P(i)P(j)], 

1 P(i)P(j)/P(ij) 5 n /(n -1), 
and 

0 5 w(ij) 5 1 /(n -1). 

The variance estimators for designs employing 
this constraint will be bounded above for each 

sample by 

(n -1) -1S S D2(ij). 
i <j 

This expression is exactly equal to the variance 
estimate for the Hansen- Hurwitz probability 
replacement design when applied to samples of 
distinct elements (ref. 11). 

It may then be concluded that application 
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of the strong constraints with C equal to (n -1) /n 

will produce designs with variances and variance 
estimates that are never greater than those that 
would be obtained under probability replacement 
designs. 

8. SOME EMPIRICAL COMPARISONS 

Two general questions cannot be answered 
directly by examination of the theoretical devel- 
opment in the preceding sections. The first 
question is concerned with the sensitivity of the 
superpopulation variance criterion to poor or 
wrong initial assumptions about the error struc- 
ture of the population to be sampled. The second 
question is concerned with the effects of the 
choice of constraints on the superpopulation 
variance criterion and on other statistical pro- 
perties such as the stability of the variance 
estimator as measured by the superpopulation 
expectation of the finite population variance of 
the Yates- Grundy variance estimator. These two 
questions were studied empirically in a small 
simulation experiment. 

Two simple population simulation models 
based on independent Bernoulli trials were uti- 
lized. Since moments up to the fourth order 
could be computed for these models, theoretical 
superpopulation results could be obtained as well 
as results of repeated simulation trials. Only 
the theoretical results are presented in this 
paper. 

Populations of size 10 were considered with 
size measures, X(i), being the numbers one 
through 10. The observed values, Y(i), were 
generated by the simulation models with the 
expected squared error, Ee2(i), proportional to 
X(i) for the first population and proportional 
to X2(i) for the second population. 

Twelve designs were studied based on four 
different assumptions about the expected squared 
error term in the superpopulation model and 
three successively more stringent sets of con- 
straints on the algebraic solutions. 

The results comparing the superpopulation 
variances of the finite population variance are 
presented in table 1. Little variation in the 
criterion function occurs due to erroneous 
assumptions about the true error model. The 
imposition of strong constraints increases the 
obtainable minimum slightly and decreases the 
variation due to error model assumed. 

Table 2 shows the behavior of the super - 
population expectations of the finite population 
variance of the Yates -Grundy variance estimator. 
Among the four model assumptions studied the 
assumption of squared error proportional to 

X(i) yields the minimum value of the function 
for either model and for any of the three con- 
straints. Imposition of the strong constraints 
can be seen to be very effective in controlling 
the stability of the variance estimator. 

9. EXTENSIONS 

The solutions for P(ij) may be obtained for 
any sample size, n. However, higher order pro- 
babilities must be obtained to completely specify 
the sample design if the sample size is greater 
than two. An extension to sample size three 
has been obtained (ref. 12). The problem remains 



TABLE 1 - THEORETICAL SUPERPOPULATION VARIANCES OF 

THE FINITE POPULATION VARIANCE 

Assumed model 
for design .01P(i)(j) 5 P(ij) 

purposes Min {P(i),P(j)} 

Ee2(i) k 
Ee2(i) = kX(i). 
Ee2(i) = 
Ee2(i) = kX3(i) 

Ee2(i) = k 
Ee2(i) = kX(i) 
Ee2(i) = kX2(i) 

Ee2(i) = kX3(i) 

288.68 
287.95 
292.81 
305.58 

9,686.55 
9,692.67 

9,664.04 
9,728.40 

Constraints applied to the P(ij) 
.01P(i)P(j) 

P(ij) 5 P(i)P(j) 

True model: Ee2(i) = .16X(i) 

288.68 
287.95 
289.17 
291.20 

True model: Ee2(i) = .16X2(i) 

9,686.55 
9,692.67 

9,671.54 
9,689.40 

.50P(i)P(j) 

P(ij) P(i)P(j) 

288.26 
287.96 
288.14 
288.28 

9,687.80 
9,690.86 
9,683.12 
9,685.03 

to extend the procedure to samples of size four 
or greater. 
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TABLE 2 - THEORETICAL SUPERPOPULATION EXPECTATIONS OF THE 

FINITE POPULATION VARIANCE OF THE YATES- GRUNDY VARIANCE ESTIMATOR 

Assumed model 
for design 
purposes 

Constraints applied to the P(ij) 

.O1P(i)P(j) P(ij) 
Min {P(i),P(j)} 

.01P(i)P(j) 5 

P(ij) P(i)P(j) 

.50P(i)P(j) 

P(ii) P(i)P(j) 

True model: Ee2(i) = .16X(i) 

Ee2(i) = k 4,647 4,647 3,979 

Ee2(i) = kX(i) 4,014 4,014 3,944 

Ee2(i) = kX2 (í) 35,252 7,735 4,410 

Ee2(i) = kX3(i) 393,893 27,701 4,468 

True model: Ee2(i) .16X2(i) 

Ee2(i) = k 72,003 72,003 66,085 

Ee2(i) kX(i) 62,815 62,815 62,826 

Ee2(i) = kX2(i) 170,775 81,915 65,037 

Ee2(i) = kX3(i) 1,549,399 166,684 66,517 
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